
RD-RI75 190 RATIONAL ARITHMETIC
IN FLOTING-POINT(U)

CALIFORNIA~UNIY BERKELEY CENTER FOR PURE AND APPLIED MATHEMATICS
USI FE N KAHAN SEP 86 PRM-343 NSISI4-85-K-S168

UNL 77 FE F/G 9/2 ML

41..

11111I1 1322

A L
III1 --" .1 L_

11111 IIB 8

MICROCOPY RESOLUTION TEST CHART
NAJINAL RtJAIAU 01 YTANDARDS 1Ati A

%I"

,€1

' .' " -",,! .'',-' € -' -. ," ;" ." .' . "" " "". ",- .- '". .- ". ",. .- -"-" J,--.- - ' ," .',.-.' .- " .- . ,,,.". ".. .. ".

CENTER FOR PURE AND APPLIED MATHEMATICS

UNIVERSITY OF CALIFORNIA, BERKELEY

PAf4343

0l

RATIONAL ARITHMIETIC IN FLOATING-POINT

W. KAHAN

SETMER18

SEPTEMBE 198

This report was done with support from the Center for
Pure and Applied Mathematics. Any conclusions or
opinions expressed in this report represent solely
those of the author(s) and not necessarily those of
the Center for Pure and Applied Mathematics or the
Department of Mathematics.

6

• !

DIS m1BUTio4 STATEIVIENT A ELECTE
Approved for public releas DEC 86

Distribution Unliited

RATIONA- ARITHMETIC in FLOATING-POINT B
W. Kahan

Math. Dept., and E. E. & Computer Science Dept.
University of California at Berkeley

Sept. 20, 1986

Abstract: Calculating M/N := A/B E C/D in lowest terms, given
the integers A, B, C and D, is a task taught in Elementary

schools; and it is an easy exercise in Computer Programming
too provided the given integers must be less than half as wide
as the widest integers that can be handled conveniently by the

computer's hardware or by its programming language. But that
program becomes much more complicated (and slower) if it is

naively expected to perform correctly whenever all six of our
integers A, B, C, D, M and N are allowed to grow almost as
wide as those widest convenient integers. This simple task
illustrates why the art of programming entails sometimes
delicate balance between, on the one hand, the simplicity
and aesthetic appeal of the specifications and, on the other
hand, the complexity and efficiency of the implement-4tion.

r

Introduction:
The obvious way to calculate

M/N := A/B + CID in lowest terms
is to first calculate

M*k := A*D + B*C and N*k B*V
and then divide them by their Greatest Common Divisor

A •= gcd(M*k, N*k) .

But the obvious way is no way to calculate
31 / 1897 51872 = 1234 56799 / 123456 - 9882 97396 / 988291

on a calculator that carries only ten significant decimals
because first

M*k := 1234 56799 * 988291 - 123456 * 9882 97396
= 12201 12433 40509 - 12201 12433 20576
= 19933

and
N*k "= 123456 * 988291 = 1220104 53696

would have to be calculated in order to reveal
k "= gcd(19933, I "20104 53696) = 643

On that calculator, the two fifteen-diait products would both
round to the same value (12201 12433 0t0.00) to ten sianifiuRnt
digits, yielding zero for I*k ; and N*k would get rounded of f
too. However, because the desired final results 1i' = 31 and
N = 189751872 can be held exactly in that calculator, a way to
compute them exactly ought to exist. An algorithm that does so
without merely simulating arithmetic to at least fifteen oiaits is
the subject of this note. The algorithm is not simple, but it is
far simpler than simulating multi-word arithmetic in BASIC

The Computing Environment:
There are limits to the widths of the inteqers and floatinq-point
variables supported conveniently in programming languages lik:e
Fortran, BASIC, Pascal and C. Integers on some computers may

".**. ". "', " ",, ., ", .,;"'* ' . ~ ' - ",",' -. .,, ,"'':v '... ', .. '.,

[-7 1 -

i ,ational Arithmetic in Floating-Point

be no wider than 16 bits, running -,om -32768 to 32767; on
most other computers the integers occupy 32 bits, running from
-21474 83648 to 21474 83647 . Integers bigger than that lose
their leftmost bits to Overflow, usually without any warning
accessible to the higher-level language program. Floating-point
variables, limited to 24 significant bits on some machines, to
53 or 56 on most others, can handle much bigger integers; but
integers bigger than

2.024 = 167 77216.0 or
2. 0 = 9 00719 92547 40992.0 or
2.006 = 72 05759 40379 27936. 0 respectively

lose their rightmost bits to Roundofl, and consequently become
multiples of powers of 2 even when ideally they should have been
odd. Similarly, on a typical ten-digit calculator, integers
bigger than 1 0000000000 get rounded off to multiples of powers
of ten. Rounding errors occur without any warning to the program
(except on machines that conform to IEEE standards 754 and p854,
which require that rounding errors signal Inexact.) That lack of
warning obliges programmers to clutter some programs with tests of
the magn.tudes of all intermediate results lest incorrect final
results be produced with no indication that they are wrong.

Let A stand for the smallest positive integer beyond which some
digit must be lost to overflow or roundoff; the previous
paragraph tenders values of A appropriate for various machines.
A is what is meant by "the widest integer that can be handled
conveniently by the computer's hardware or by its programming
language." The obvious way to calculate N/N described above
would obviously work if IA*DI, IB*CI and IB*DI were all somewhat
smaller than A , as would surely be the case if IAI, 181, ICI
and IDI were all somewhat smaller than yA . The vagueness here
implied by the word "somewhat" allows for sloppy implementations
of floating-point arithmetic that, on some machines, introduce
unnecessary rounding errors when integer results approach A too
closely. Notwithstanding that vagueness, an aloorithm will be
presented that calculates M and N exactly whenever they and the
given integers A, B, C and D are all somewhat smaller in
magnitude than A rather than merely fVA

Rem, gcd, and Lowest Terms:
Our algorithm will require certain utilities which, if not
already present in the programming environment, will have to be
programmed from scratch. Reducing (1*k)/(N*k) to its lowest
terms M/N requires that k = gcd(M*k, N*k.) be computed; and
the fastest ways to compute gcd's require that remainders be
computed. Let

rem (x, y) "= x - y*(the integer nearest x/y) provided y *)
This is consistent with the definition of the operation rem that
must be present in programming environments that conform to the
IEEE standards 754 and p854 for floating-point arithmetic. In
other environments, rem must be composed from other primitives.
In Fortran the Qeneric intrinsic function MOD (for INTEGERs, -
AMOD for REALs, DMOD for DOUBLE PRECISION) serves to define REM
thus:

AP _A__

2 / ::

-. ~~r -. Wm -. -. V-. d, Vw UV N- P" A .

Rational Arithmetic in Floating-Point

GENERIC FUNCTION REM(x, y)
REM = MOD(x, y)
IF (ABS(REM) .GT. ABS(y-REM)) REM = y - REM
RETURN
END

Absent rem and MOD, the following procedure might be used:
function rem(x, y):

q : x/y ;
n := q rounded to the nearest integer ;
return rem := x - y*n ;
end.

Both procedures can malfunction when x approaches or exceeds A
in magnitude; the following example will show how roundoff in
x/y and y*n causes trouble.

Suppose floating-point arithmetic is rounded to six significant
decimals, for which A = 1000000 . Now take x = 999999.0 and
y = 9901.0 , whereupon xly = 100.99979 80002 ... must round
to q = 101.000 . Then n = q , but y*n = A+1 must round to
A , which wrongly returns -1.0 instead of -2.0 for rem .
Similar rounding errors inside the implementation of AMOD can
return -1.0 instead of 9899.0 for AMOD(999999.0, 9901.00)

If the quotient x/y were chopped instead of rounded, no such
malfunctions could occur. With rounding, they can be avoided bv
keeping IxI and lyl both smaller than A/2 . If the error bound
for floating-point division is vague, as it is for CRAYs. we
can compensate for ignorance by further restricting IxI and lyl
that is why phrases like "somewhat smaller than A have been
uttered above.

Having found a way to compute rem(x, y) well enough that
(x - rem(x,y))/y is an integer exactily, and
I rem(x,y) I _ IyI/2 roughly,

we may use it to compute Greatest Common Divisors quickly thus:
function qcd(x, y.):

while y 0 0 do < temp y
y = reme, y)
) e= temp I

return .cd I';
end.

Besides the usual properties for positive integers Yc and y,
namel y

gcd(xc,y) is the largest integer such that
x/gcd(x,y) and y/gcd(x,y) are both integers exactlv,

this procedure gcd(., y) has useful properties when its
arguments are negative integers or zero;

gcd(x,y) - gcd(IxI, lyl) and gcd(x,O.) = gcd('O,) =
These properties simplify the explanation of the assertion

a l/N is in lowest terms, "
which shall now be taken to mean that integers H and N satisfv

" N > 0 , and either gcd(M,N.) = I or M = N =) "
We shall abbreviate "in lowest terms" to "ilt" and use it not
only as an adjective but also as an operator that maps pairs o+
integers to pairs thus:

Rational Arithmetic in Floating-Point

function ZIt(x, y):
q := copysign(maxCgcd(x,y), II, y)
return Zit (x/g, y/g
end.

Now asserting that (M, N) - Ilt(x, y) means the same thing as
M/N = x/y ilt

Idealized Rational Operations
The mapping Ilt provides a unique pair of integers (M. N) to
represent each rational number M/N = x/y ilt , including also
+1/0 = +0 , as well as a representation for the entity o/0
called "NaN" (for "Not a Number") in the IEEE standards for
floating-point arithmetic. But those standards also specify how
+0 and -0 will behave arithmetically in case a programmer chooses
to distinguish them, something that cannot be done usefully on
most machines that do not conform to those standards. Without a
well-behaved signed zero, attempts to distinguish between +0
would run afoul of identities like M/N = -1/(-NiM) when M = I
and N = 0 . That is why we shall herein regard Co as unsigned,
like 0 , as if the ends of the real axis had been lifted and
joined to form a circle out of it. Rational operations consistent
with that picture are defined in a familiar way as follows:

A/B + CI D = (A*D + B*C)/(R*D) ilt respectively
(A/B)*(C*D) (A*C)i(B*D) ilt
(A/B) (C/D) := (A*D)/(B*C) ilt

A/B = C/D just when A*D = S*C but 1A*CI + IB*DI $ 0
Thus, the set of all rational numbers, augmented by co and 0(/0
constitutes a system closed under the rational operations so
defined. But the subset of rational numbers H/N representable
conveniently on our computer, those for which Ilt and I do
not exceed A , does not constitute a closed system: instead it
poses a challenge to implement the rational operations correctly
for those operands and results that do lie within the subset.

Implementations of multiplication, division and equalitv-testin
are entirely straightforward, as follows below, provided al.l
operands are ilt. In other words, the operands are Dresurned to
be pairs of integers that will pass unchanged throuah the function
Ilt , and the results will do the same provided their magnitudes
are somewhat smaller than A

function Product(A, S, C, D): ... to get (A/)*(CID) ilt
k := max l , gcd(., V.)] m := max (1, acdBr, C)} :
return Product ((Alk)*(C/m) , (S/m)*(Dlk)
end.

Note that if the final results are all somewhat smaller in
magnitude than A then the same must be true of all intermediate
results A/k, B/m, C/m and D/k , so the final results are right.

function Qu'uotient(A, B, C, D.): ... to get (A/B) (C/D, 11t
return 6?uotient ProductA, 8, D. C)
end.

4

.._- :-, -..-,- -..;-- -,.v ... ,......: .-. -. ..-..-. -.. .. -.....- .-. :.. 2.--

Rational Arithmetic in Floating-Point

logical function Equal(*A, B, C, D): ... does A/B = C/D
if (B=0 and D=O) then

(if (A=O or C=O) then Equal FALSE
else Equal "= TRUE '

else (if (A=C and B=D) then Equal := TRUE
else Equal := FALSE I

return Equal

end.
This procedure Equal depends crucially upon the presumption that
its arguments A/B and CID are ilt. Note also that 0/0 is not
equal to anything, not even itself, since it's "Not a Number."

Addition and subtraction are complicated procedures because they
have to cope with expressions like A*D+*C when their values are
somewhat smaller in magnitude than A even though the individual
products are not. The following subprocedure is needed.

Coping with the Determinant x*t - y*z :
The evaluation of expressions like x*t - y*z= det(I) when
x, y, z, t and the determinant are all integers somewhat smaller
than A in magnitude, even though x*t and y*z are both rather
bigger, is a subtask that occurs often enough to deserve separate
attention. Our approach is inspired by Gaussian Elimination
except that, instead of seeking a biggest pivot in order to
secure numerical stability, it finds the smallest element in the
array (v) and reduces some other element to half that size.
The reduction process ends either when x*t and y*z differ in
sign, or when they are both smaller than A , in which cases the
determinant can be evaluated safely.

function Det(x, y, z, t): ... to get det(m 1)
while x*t*y*z > A do

C if IzI lyl then := z

y '= }
if Ixl . Itl then Cs = x

x * = t

if Ixl IzI then C s x

x := -:

-t
t =

.. now I\ izl < lyl and Il K: t
n "=integer nearest ylIx
y~ ": y - *nl * .. = rem~y. x)
t "=t - z*n ; ... = (Vet + y*z)lx
if now new yI I/21 and
... Inew tI < I aet/xl + I I/21
.. . no n w I < Ian

return Det x*t -y*z

end.

- 4~*5

Rational Arithmetic in Floating-Point

Addition and Subtraction:
Like the foregoing functions Product and Quotient, the following
procedures act upon two pairs of integers that will pass unchanged
through the function Ilt, and the results are pairs that will do
likewise provided their magnitudes are somewhat less than A

function Sum(A, B, C, D): ... to get (A/B) + (CID) ilt
return Sum := Diff(A, B, -C, D)
end.

function Diff(A, B, C, D): ... to get (A/B) - (CID) ilt
G := maxtl, gcd(B,D)} ; b :- BIG ; d := DIG
... Now we seek (A*d-b*C)/(G*b*d) ilt, but first we

must cancel any common factor a hiding in G :
a := rem(A,G) ; c := rem(C,G) ; g := gcd(G, a*d-b*.) :
... Note la*d-b*cI < 1d*G/21+Ib*G/21 < A .
N := (G/g)*b*d ; ... the desired denominator.
... The numerator will be M = (A*d-b*C)/g ...
a rem(a,q) ; c := rem(c,g)
M := (a*d-b*c)/g + Det((A-a)/g, b, (C-c)/q, d)

e nuNote how Ia*d-b*cl K A as before.
return Diff := (M, N)
end.

Are they worth the bother?
It seems at first unlikely that a calculation of

M/N := A/B + CID = (A*D + B*C)/(B*D) ilt
would start with integers A, B, C, D not much smaller than A
and end with integers N, N no bigger than A . But, having
programmed the foregoing procedures into various programmable
calculators including an HP-97 and an HP-71B, I have seen
these unlikely events occur about as often as not. Perhaps this
is merely evidence that I have been computing some things the hard
way instead of the easy way, rather than evidence that anyone
else will use the programs every day.

These programs are the simplest I know that exemplify a property
more often found among numerical programs than others: their
simple and natural specifications belie complicated and unnatural
implementations. It may seem natural to demand that, if the datA
given a program and the output desired from it can both be
represented exactly within the convenient range of a computer's
capabilities, the output actually delivered should be correct.
But that demand implies that the program will find a path from the
data to the output without first transgressing the computer's
limitations despite that the path begins and ends only a step or
two away from the edge. Such a path need not be obvious.

Programs:
Programs for the HP-67/97 and HP-71B have been appended to
these notes. The program for the HP-67/97 requires very little
change to run on the HP-41C or HP-15C. Although the HP-719
program is written in a kind of BASIC that loo s as if it would
run on diverse other machines, the program ex ploits the HP-71P''3
conformity to IEEE p854 in two ways. First, its rem operator

6

Rational Arithmetic in Floating-Point

(called RED on the HP-71B) is built-in and allows the program
to handle integer inputs as big as A = 100 0000 00)000 . Second,
the Inexact signal accessible through FLAG(INX, ...) permits
the program to try obvious algorithms first and then, only if it
encounters roundoff, resort to slower ones. Chained sequences of
rational operations can be attempted in confidence because their
results will assuredly be correct unless Inexact is signaled.

Ackno l edgements:
Although prepared in this form for an Introductory Numerical
Analysis class, these notes are based upon researches continued
over an extended period. The author has used procedures similar
to Det in programs that solve linear and quadratic equations.
precondition ill-conditioned problems to make them easier to solve
accurately, and prepare test data for other programs. That work
has been supported at times by grants from the Research Offices
of the U. S. Army, Navy and Air Force under contracts numbered
respectively DAA629-85-K-O070, NO')O 14-76-C-0013 and AFOSR-84-0158.

HP-67/97 program to perform RATIONAL ARITHMETIC on pairs of integers in Lowest Terms

Usage: The stack holds four integers 1, Y, Z, T construed as two rational numbers Y/1 and T/I
both presumed to be in lowest terms (ilt). If not, pressing CE] will reduce Y/1 to lowest
terms while leaving T/Z unchanged. The four rational operations are performed by pressing one of
the keys (A], [D], CC], 10] to invoke reliable programs, or [a], Cb] [c) Ed] to invoke obvious
programs. The reliable programs accept integers as large as 1,999,999,999 and deliver exactly
correct results up to 8,000,000,000 . Specifically, the programs ...

Add: Press (A] or [a] to put Y/1 := (T/Z) + (Y/X) ilt, leaving T/Z unchanged.
Subtract: Press 18] or (b] to put Y/I := (T/Z) - (Y/!) ilt, leaving T/Z unchanged.
Multiply: Press CC] or Cc] to put Y/I (T/Z) # (Y/X) ilt, leaving T/Z unchanged.
Divide: Press ED] or Cd] to put YIX (T/Z) (Yi) ult, leaving T/Z unchanged.
Reduce: Press CE] to put Y/ := (Y/Z) lt, leaving TIZ unchanged.
GCD: Press Cel to put X :- Greatest Common Divisor of X and Y
REM: Press CGSD1 (81 to put X :z Y - nX and n := Integer nearest Y/I into reg. 8

The programs use registers 0 to B and I, and labels 2 to 8 too.

Program: sLL A CHS *LBL B USS 7 IUY Rt STO 4 6SD e 1=0? EEX STO 5 STO'0 STO 4 RCL I XZY
6SB 8 RL 4 x ST06 RCL 3 Rt 6SB 8 RCL 0 STO 7 x RCL 6 - 6S e STO'5 RCL I X'Y
GSB 8 RCL 4 STOxO x STO I RCL 8 STO 6 RCL 3 Rt GSB S RCL 7 x RCL I - UY STO I
RCL 5 STUxO RCL 8 STO 5 L.BL15 RCL 6 RCL 4 x ENTt ENTt RCL 5 RCL 7 x x EEX 1 0
X)Y? GTO 4 RCL 6 ADS RCL 4 ADS X(Y? GTO 3 LASTX RCL & STO 4 XUY STO 6 .LDL 3 RCL 5
ADS RCL 7 ADS IVY? STO 3 LASTI RCL 5 STO 7 XY STO 5 LBL3 RCL 7 AD5 RC. 4 408
X(Y? 6TO 3 RCL 6 RCL 7 6S8 STO 6 RCL 4 RCL 8 x STO-5 6TO 5 *LL 3 RCL S RCL 4
6S8 9 STO 5 RCL 7 RCL 8 x STO-6 6TO 5 LBL 4 LASTX Rt - STO1 TO 6

*LB. e) CHS STO I R 1:0? STO 2 6S9 8 GTO i I jumps back three steps to X:0
*1818 STO 8 IY ENTt ENTt RCL 8 ! DSPO RND STO 8 Rt x - RTN .41 2 Y ABS RTN
#L8L 7 STO 0 Rt STO I Rt STO 2 Rf STO 3 RTN
'LUL E 6S9 7 Rt GSD e I-O? 6TO 6 STO O STOI,
'18. 6 RCL 3 RCL 2 RCL I RCL 0)0? RTN CHS XIY CHS XJY RTN
LUL 0 11Y *LBL C GSB 7 STO 4 GSB e X#O? STO O 10? STO'4 RCL I RCL 2 6S8 e
100? STO+I RCL 2 XJY 10O? . STOxO RCL 4 STOxI GTO 6
*LDL a CHS 'LL b GS8 7 x XY Rt STOxO - GS1 6 GTO E
.LL d WlY K4L. c 6S9 7 STOx1 Rf STOxO GSB 6 6TO E

7

* -.- *.-o':-,-

Rational Arithmnetic in Floatina-Foint

10: Listing of HP-71B program to per-form RATIONAL ARITHMETIC
2)0 upon pairs of integers in Lowest Terms conveyed as
30 "Complex Variables" to represent R = Il/N as (M.N)
40 The "Complex" functions herein are..
50 fnA(R,S) = R+S fnS(R,S) = R-S
6o fnM(R,S) = R*S fnD(R,S) = R/S
70 fnI(R) =R in lowest terms (ult)
80 !Supporting Real functions include ...

90 -FnD0(R,S) =det(R,S) = Impt(Conj(R)*S)
loo fnG(I,J) =Greatest Common Divisor of I and J
110 ! RED(I,J) =rem(I.J) = I rem J as in IEEE st'd pB 5 4

120 RUN to sense FLA6(INX) and reset it to C) if that
130 !changes then a result has been compromised by roundoff.
140 COMPLEX R,S, RI,SI, R2,S.2, R.,S3-, R4,S4, R5,S5, R6
150 ********

160 DEF FNG(IOJO) . -GCD(IO,J0)

170 IF JO=o THEN 190
18O oo=Jo @ Jo=RED (IO,Jo) @ IO=oO- @ IF JO#0 THEN 160
190 FNG=ABS(I0) @ END DEF
200!
210 DEF FNI(R6) =R6 IN LOWEST TERMS
220 FNI=R6/MAX(1,FNG(REPT(R6) 1 IMPT(R6)))*SGN(CLASS(IMPT(R6)))
230 END DEF
240 !

A,. 25: DEF FNDo(R5,S5) !..=det(R5,S5) = Irpt(Conj(RS)*S5)
260 ol=REPT(R5) @ o2=IMPT(R5) @ oZ=REPT(S5) @ o4=IMPT(S5)
270 o0=FLAG(INX,0) @ o5=SGN(oI*o4)*SGN(o2*o3) @ o0=FLAG(INX,o0)
280 IF o0O OR o5#1 THEN 350
290 IF ABS(o:>ABSo2) THEN o5=67, @ o3-=o2L @ o2o5
30o IF ABS(o1)>ABS(o4) THEN o5=ol @ olo4 @ o4=o5
310 IF ABS(o1)<=ABS(o37) THEN 330
3210 ool@o-o3 @ oZo5 @ o5=o2 @ o2=-o4 @ o4=o5
330: o5=RED(o2;,ol) @ oo=(o2-o5)/ol @o2=o5 @ o4=o4-o3*oO

4-340 GOTO 270
350 FND0=o I*o4-o2*o37 @ END DEF
.760
370 DEF FNM(R4,S4) ..- R4*S4 in lowest terms
380O oI=REPT(R4) @ o2=IMPT (R4) @ o3=REF'T(S4) @ o4=IMPT(S4)
.390 o5=MAX(1,FNG(ol,o4)) @ o0.=MAX(1,FNG(o2,o3))
400 FNM=((ol/o5)*(o3/oO), (o2/oO--)*(o4/o5)) @ END DEF
410
420 DEF FND(R3, S3)=FNM(R,(IMPT(S),REF'T(S.))) R3/S7 ilt
43':) 1
440 DEF FNS(R2,S2) .. =R2-S2 in lowest terms
450 oI=REPT(R2) @ o2=IMPT(R2) @ o-3=REPT(S2) @ o4=IMFT(S72)
460 oO=FLAG(INX,O) @ o15ol*o4-o2*o3 @ o6=o2*o4 @ o')=FLAG(INXO':))
470 IF a()=(THEN FNSFNI((o5,o6)) 8d GOTO 5.30(-
480 o9=MAX(1,FNG(o2,o4)) @ o2=o2/o9 @ o4=o4/o9
490: o6=RED(oI~o9) @ o7=RED(o34 o9) @ o5=FNG(o9.o6*o4-o2-*o7/)
5oO o9=(o9/o5)*o2*o4 @ o6=RED(o6,o5) @ o7=RED(o7,o5)
510 a8=(o6*o4-o2i*o7)/o5 @ o1=(o1-o6)/o5 @87(7-o)o5
520 FNS=(FNDo((ol,o2-),(o3-,o4))+o83, o9)
5*3o END DEF

-54 0
j5(: DEF FN(Rl,Sl)=FNS(R,(-REFrSC-I),IMPT(Slm .. RI+S1 ilt
560:
570 IF FLAG(INX,1 0=O- THEN DISP "E,,tact' ELSE DlSF "Ineva'l'

%8

University ofClfona Berkeley 2 RU

Rational Arithmetic in Floating-Point

4 OESCRIPTIVIE NOTES (T'pe ol report and Inclu-ve dares)

* CPAM report, September 1986
5 AU 11'.0043 (First fAm*. m~ddt-le,l. lost naume)

W. Kahan

* ~ REPORT OATE 70. TOTAL NO OF PAGES Rb N C I~ IE

* September 19868
6a CONTRACT OR GRANT'NO 90. ORIGINATOR'S REPORT Nu.BERiS)

N00014-85-K-0180
b. PRO.)E CT NO

C. q9. 0!" ER REPORT NOISI (Any other numbers thaet mat- be *.~ge
thos report)

d.

* It SUPPLEM5ENTARY NOTES a SPONSORING MILITARY ACTIVITY

Also supported by Mathemati Cs Branch
DAA629-85-K-0070 (U. S. Army) Office of Naval Research
AFOSR-84-0158 (Air Force) Washington, DC 20360

3 ABSTRACT

Calculating MIN =A/B + C/D in lowest terms, given
the integers A, 8, C and D), is a task taught in Elementary
schools; and it is an easy exercise in Computer Programming
too provided the given integers must be less than half as wide
as the widest integers that can be-handled'conveniently by the
computer's hardware or by its programming language. But that
program becomes much more complicated (and slower) if it is
naively expected to perform currectly whenever all six Of our

* integers A, S, C, D, M and N are allowed to grow almost as
wide as those widest convenient integers. This simple tas:

* illustrates why the art of programming entails sometimes ~
delicate balance between, on the one hand, the simplicity
and aesthetic appeal of the specifications and, on the other

- hand, the complexity and efficiency of the implementation.

S/N 01Q1-807.6801 Scrt ISOC1o

1% A

Legal Notice

This report was prepared as an account of work sponsored by
the Center for Pure and Applied Mathematics. Neither the
Center nor the Department of Mathematics, mdkes any warranty
expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness
OF any information or process disclosed.

'4dip

/mft.

